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A method is introduced which allows to compute  self-consistent restricted 
Har t r ee -Fock  wave functions for excited Rydberg configurations. The con- 
cepts of reorganization and electron correlation of Rydberg states are dis- 
cussed. As an illustration Har t r ee -Fock  calculations for the (ls)(nl) Rydberg  
series of He  are presented. 
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1. Introduction 

The concepts of electron correlation and reorganization are so familiar, that 
they need not be introduced. Both these concepts are characterized by the fact 
that they are based on mathematical  rather than on physical ideas, since neither 
can be measured experimentally. Nevertheless electron correlation and reor-  
ganization facilitate the physical interpretation of electronic wave functions 
because the complicated energy of a correlated wave function can (at least 
approximately) be parti t ioned into contributions which arise f rom physically 
distinguishable effects. A classical example is Meyer ' s  study on the ionization 
of H 2 0  [1]. The ionization energies are analyzed in terms of Koopmans '  energies, 
loss of correlation energy caused by the abstraction of an electron, reorganization 
of the orbitals and so on. In this case the Har t r ee -Fock  single determinant  wave 
function of the neutral molecule serves as a reference function with respect to 
which reorganization and correlation energies can be calculated. 

Although the concepts of reorganization and correlation have proved useful for 
understanding the ground and low lying electronic states, they are in general 
not applied in the discussion of higher excited states. There  are two reasons for 
this: First a reference function has to be calculated which can Serve as a starting 
point for the reorganization of the orbitals. It  may be difficult to define a physically 
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significant reference function. Second the distinction of reorganization and corre- 
lation implies that the orbitals of the reference function can be relaxed selfcon- 
sistently, i.e. that a restricted Har t ree-Fock  function for the excited state can 
be calculated. The techniques for such calculations are by no means standardized. 

In the following two sections it will be shown how the concepts of reorganization 
and correlation can be applied to Rydberg states. 

2. The Frozen Core Aprroximation for Rydberg States 

An electronic state is called a Rydberg state, if a single electron is moving in 
an expanded orbital and is attracted by a relatively small ionic core. The shape 
of the Rydberg orbital is determined mainly by the interaction with the charge 
of the core and by orthogonality constraints with respect to the (occupied) core 
orbitals and, perhaps, to lower (unoccupied) Rydberg orbitals. The prototype 
for Rydberg orbitals are the electronic states of the hydrogen atom where the 
core reduces to a proton. 

Approximate single-configuration wave functions for Rydberg states can be 
obtained with the frozen core (FRC) method. This method can be traced back 
to Mulliken [2] and has been introduced into quantum chemistry by Lefebvre-  
Brion and Moser [3], and by Hunt  and Goddard [4] as the method of improved 
virtual orbitals. In connection with excited Rydberg states however we prefer 
to term it FRC [5]. 

First a restricted Har t ree -Fock  (RHF) calculation for the bare core is carried 
out. This wave function may represe~t a closed-shell or an open-shell configur- 
ation, a ground or an excited state. Then the subspace of the occupied core 
orbitals is projected out of the orbital basis, and with the remaining orbitals the 
single particle problem for the Rydberg electron is solved. This method has 
repeatedly been applied to the calculation of atomic and molecular Rydberg 
orbitals [6-8]. To be precise the Rydberg orbitals are eigenfunctions of the 
operator  

I~b~)(h + 2 J  d - K  a +J~ • K~)<~I (1) 
/J 

where the superscripts denote doubly and singly occupied core orbitals and the 
sum extends over the virtual orbitals ~ .  Eq. (1) applies for a doublet Rydberg 
state with closed-shell core if the potentials j s  and K s are omitted, and for singlet 
or triplet Rydberg states if the plus or minus sign is used, respectively. It can 
be understood as a Brillouin condition optimizing a singly occupied Rydberg 
orbital ~bRwith respect to the space of the unoccupied orbitals. The eigenvalues, 
eR, of Eq. (1) are called orbital energies. If ek is added to the energy expectation 
value of the bare core we get the total electronic energy of the kth Rydberg 
state in the FRC approximation. Hence, the eR can serve as approximate 
ionization energies of the Rydberg states [2]. 
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According to the Hyl leraas-Undheim theorem [9, 10] the energy of the kth 
Rydberg state of a given symmetry  in the FRC approximation is an upper  bound 
for the exact k th  energy eigenvalue. This theorem can be invoked here because 
the FRC wave functions can also be interpreted as the eigenfunctions of a limited 
CI- t rea tment  for all single excitations of the Rydberg electron in the field of a 
fixed core. The consequences of this fact shall be discussed in Sect. 4. 

We will use the FRC single configuration wave functions as reference functions 
for the Rydberg states. The reorganization energy of the kth Rydberg state can 
be defined as the energy difference between the kth FRC and the kth excited 
state R H F  solution where the corresponding reorganized core orbitals are 
occupied. The difference between the R H F  energy and the exact non-relativistic 
energy is defined as the correlation energy [11]. 

3. Hartree-Fock-Theory for Excited Rydberg States 

In the past, several methods have been invented for the calculation of self- 
consistent single-configuration wave functions of electronically excited states. 
These methods have been applied to inner shell ionizations [12] and valence 
excited Koopmans '  configurations [13] and also to lower excited states [14-17]. 
Froese has developed a formalism which was applied to the calculation of atomic 
Rydberg states [18, 19]. All these methods yield orbitally optimized wave func- 
tions for different electronic states of a system which are mutually non-orthogonal  
[20, 21]. In exceptional cases even the set of occupied orbitals of an individual 
excited configuration has been chosen non-orthogonal  [22]. The method which 
we present below does not differ in this respect from earlier attempts,  but has 
the advantage that it has been specifically designed for the calculation of Rydberg 
states and leads to a perspicuous formalism which can be easily programmed.  

This method is based on the familiar formalism for the t reatment  of open-shell  
configurations in the R H F  approximation (e.g. [23, 24]). A Brillouin condition 
has to be formulated [25-27] for any pair of orbital subspaces whose mixing 
may lead to an improved energy of the wave function. Each Brillouin condition 
yields an effective operator  and these operators  have to be combined into a 
single Fock matrix by means of the projection operator  technique. The Fock 
matrix is diagonal if it is written in the basis of the self-consistent orbitals. 

If this formalism is applied to the calculation of excited Rydberg configurations 
one is confronted with the necessity of preventing the excited Rydberg orbital 
f rom collapsing and transforming to a lower orbital. This can be achieved with 
an iterative procedure where a number  of R H F  iterations for the core orbitals 
are performed and then an FRC calculation for the Rydberg orbital is carried 
out and the process is repeated,  until selfconsistency is reached. In the course 
of the R H F  steps all the off-diagonal elements of the Fock matrix connecting 
the occupied Rydberg orbital with unoccupied orbitals are put equal to zero in 
order to avoid any mixing of occupied and unoccupied Rydberg  orbitals. The 
FRC step on the other hand is equivalent to an elimination of all the matrix 
elements influencing the core orbitals, as is shown in Fig. 1. 
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Fig. 1. Fock matrix for excited Rydberg configurations 

/ / /  matrix elements omitted for the FRC step. 
\ \ \ elements zeroed during the reorganization of the core orbitals. 
The entries of the matrix have the following meaning: 
c core orbitals (occupied), 
k occupied Rydberg orbital, 
v, v' unoccupied orbitals 

The FRC step yields a manifold of Rydberg orbitals which have been calculated 
in the field of the reorganized core. The procedure leads to a stable solution if, 
after each FRC calculation, the kth  Rydberg orbital is selected to be occupied 
for the next R H F  iterations of the core. Selfconsistency is achieved as soon as 
the orbitals will not be modified anymore  by either step. In this situation all the 
off-diagonal elements of the Fock matrix whcih were zeroed in the course of 
the iteration will vanish automatically. Therefore  no artificial condition is imposed 
on the self-consistent wave function other than requiring its energy to be an 
upper  bound of the kth  exact solution of the Schr6dinger equation. 

4. Discussion of Special Cases 

We are used to the situation that the energy of a wave function is lowered if 
reorganization and electron correlation corrections are included. In this case the 
signs of AE(reorg.)  and AE(corr.) are defined to be negative. For excited states, 
however,  both energy contributions can be positive as well. More often positive 
contributions to the total (negative) correlation energy lead to unusual correlation 
corrections for excitation on binding energies similar to those repor ted by Bagus 
[12] for the case of core ionization. Positive correlation effects appear  when in 
the exact wave function the Ha r t r ee -Fock  configuration is mixed with a lower 
configuration such that the energy is raised. Physically this can be interpreted 
in analogy to the (negative) correlation energy of a ground state wave function: 
In the R H F  approximation the electron repulsion is underest imated with respect 
to a correlated function, where the electrons are forced to be closer to each 
other than a single configuration picture would predict. As a rule Rydberg states 
exhibit effects of positive c o r r e l a t i o n - o r  "ant icorrelat ion",  when there is a 
different configuration of the same symmetry  at lower energies. An example is 
provided by the (ls)E(2s)(nd):lDg-Rydberg series of Be which is shifted to 
higher energies by interaction with the (ls)2(2p) 2 : 1Dg configuration. In this case 
the Hyl le raas -Undhe im theorem invoked above says that the . . .  (2s)(3d) : 1Dg 
single configuration energy is an upper  bound to the exact energy of the lowest 
1Dg state which turns out to h a v e . . .  (2p) 2 configuration [28]. The R H F  energy 
o f . . .  (2s)(4d) is an upper  bound to the exact energy o f . . .  (2s)(3d) and so on. 
Positive reorganization effects appear  when in the FRC approximation the 
interaction with a lower configuration is neglected, which will be included in the 
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R H F  t r ea tmen t .  A s  an e x a m p l e  we discuss the  (ls)(ns):lsg R y d b e r g  ser ies  of 
He .  In  the  F R C  a p p r o x i m a t i o n  the  ns orb i ta l s  a re  o p t i m i z e d  assuming  a fixed 

l s  o rb i t a l  of H e  +. R H F  orb i ta l s  a re  chosen  such tha t  the  ma t r ix  e l e m e n t  of the  
H a m i l t o n i a n  b e t w e e n  (ls)(ns) and  any (ls)(ks) or (ks)(ns) singlet  conf igura t ion  
(k # 1, n ;  o r t hogona l  o rb i ta l s  assumed)  vanishes .  This  is ach ieved  with  an 
a p p r o p r i a t e  def in i t ion  of the  l s - k s  and n s - k s  mat r ix  e l emen t s  of the  F o c k  
matr ix .  The  crucial  po in t  is the  inclusion of the  ( l s )  2 and  (ns) 2 conf igurat ions .  
T h e  l s -  ns e l e m e n t  of the  Fock  ma t r ix  can be  used  for  hand l ing  one  a rb i t ra r i ly  
chosen  l inear  c o m b i n a t i o n  of them.  W e  have  s tud ied  the  fo l lowing possibi l i t ies :  

(i) Br i l lou in  var iant .  The  I s - n s  e l e m e n t  of the  F o c k  ma t r ix  is def ined  as the  
ma t r ix  e l e m e n t  of the  H a m i l t o n i a n  b e t w e e n  (ls)(ns) and  the  add i t iv ie  c o m b i n a -  
t ion ( ( l s ) 2 +  (ns)2)/42. H e n c e  

. , ~ - ( l s )  .~,,-(ns) 
Ig ls ,ns  = 2 h l s , n s  " t - l l  ls,  ns T~t~" ls ,ns 

where  F, h , K  d e n o t e  the  Fock ,  single par t ic le  and  exchange  ope ra to r s .  
This  choice  leads  to a se l f -cons is ten t  wave  funct ion  in the  sense  of the  Br i l lou in  
t h e o r e m  because  the  CI mat r ix  e l e m e n t  to any singly subs t i tu ted  conf igura t ion  
vanishes .  H e r e  a conf igura t ion  is cal led s ingly subs t i tu ted  when  the  CI mat r ix  
e l e m e n t  conta ins  fo rmal ly  a con t r ibu t ion  of the  h ope ra to r .  The  CI  e l e m e n t  

wi th  a c o m p l e m e n t a r y  c o m b i n a t i o n  ( ( l s )  2 -  (ns)2)/~/2 consists  only  of e l ec t ron  
in te rac t ion  cont r ibu t ions .  

(ii) HyUeraas  var iant .  The  l s - n s  e l e m e n t  can be  used  for  ensur ing  tha t  the  
R H F  ene rgy  of a R y d b e r g  s ta te  is a t rue  u p p e r  b o u n d  to the  c o r r e spond ing  

Table 1.(lsnl) Rydbergstatesof He:Ionization energies 

-e(exptl.) ~ -e(FRC) b -e(RHF) -AE(reorg.) -AE(corr.) c 

ISa 2s 0.145974 0.155255 0.145511 -0.009744 0.000463 
3s 0.061272 0.063587 0.061202 -2385 70 
4s 0.033587 0.034497 0.033565 -932 22 
5s 0.021177 0.021625 0.021167 -458 10 
6s 0.014563 0.014816 0.014558 -258 5 
7s 0.010626 0.010782 0.010622 -160 4 

1Se 2s 0.123906 -0.031349 0.022068 
3s 0.054864 -8723 6408 
4s 0.030925 -3572 2662 
5s 0.019830 -1795 1347 
6s 0.013790 -1026 773 
7s 0.010147 -636 479 

1Sf 2s 0.169851 0.014596 -0.023877 
3s 0.066644 3057 -5372 
4s 0.035630 1133 -2043 
5s 0.022168 543 -991 
6s 0.015118 302 -555 
7s 0.010967 185 -341 
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-e(exptl.) a -e (FRC)  b - e (RHF)  -AE(reorg.) -AE(corr.) c 

38 2s 0.175237 0.174242 0.174247 0.000005 0.000990 
3s 0.068691 0.068482 0.068482 0 209 
4s 0.036513 0.036434 0.036434 0 79 
5s 0.022619 0.022580 0.022580 0 39 
6s 0.015378 0.015355 0.015355 0 23 
7s 0.011130 0.011116 0.011116 0 14 

1p 2p 0.123839 0.122445 0.122460 0.000015 0.001379 
3p 0.055146 0.054736 0.054737 1 409 
4p 0.031069 0.030895 0.030895 0 174 
5p 0.019906 0.019815 0.019815 0 91 
6p 0.013834 0.013781 0.013781 0 53 
7p 0.010169 0.010135 0.010135 0 34 

3p 2p 0.133173 0.131316 0.131431 0.000115 0.001742 
3p 0.058083 0.057579 0.057587 8 496 
4p 0.032325 0.032119 0.032120 1 205 
5p 0.020551 0.020446 0.020447 1 104 
6p 0.014208 0.014147 0.014147 0 61 
7p 0.010405 0.010366 0.010366 0 39 

1D 3d 0.055621 0.055543 0.055543 0.000000 0.000078 
4d 0.031280 0.031242 0.031242 0 38 
5d 0.020016 0.019995 0.019995 0 21 
6d 0.013899 0.013885 0.013885 0 14 
7d 0.010211 0.010201 0.010201 0 10 

3D 3d 0.055636 0.055569 0.055569 0.000000 0.000067 
4d 0.031289 0.031257 0.031257 0 32 
5d 0.020021 0.020003 0.020003 0 18 
6d 0.013902 0.013890 0.013890 0 12 
7d 0.010212 0.010204 0.010204 0 8 

a Binding energies with respect to He + (Ref. [28]). 1 a u (4He)~218844.6 cm 1. 
b E(He § = 1.999996 a.u. with the basis set used. 
c e (RHF)-e (exptl.); relativistic contributions neglected. 
d Brillouin variant, see text. 
e Hylleraas variant, see text. 

Hellmann variant, see text. 

e x a c t  e n e r g y .  T o  t h a t  p u r p o s e  it  h a s  to  b e  d e f i n e d  as  t h e  CI  m a t r i x  e l e m e n t  of  

t h e  c o n f i g u r a t i o n s  (ls)(ns) a n d  ( l s )  2. (I t  is a s s u m e d  t h a t  t h e  e n e r g y  of  ( l s )  2 is 

b e l o w  (ls)(ns), in  c o n t r a s t  to  (ns)2) .  H e n c e  

F l s ,  ns ~/2(h i . . . .  -~.1~1 . . . .  }.  

A r g u i n g  a l o n g  t h e  s a m e  l i n e s  as  G u e s t  a n d  S a u n d e r s  [13 ]  o n e  c a n  s e e  t h a t  in  t h i s  
c a s e  t h e  R H F  e n e r g y  c o r r e s p o n d s  to  t h e  n t h  e i g e n v a l u e  of  a l i m i t e d  C I  c a l c u l a -  

t i o n .  S i n c e  t h e  F R C  e n e r g y  is a n  u p p e r  b o u n d  o n l y  to  t h e  (n - 1 ) t h  s t a t e  of  1Sg 

s y m m e t r y  p o s i t i v e  r e o r g a n i z a t i o n  e f f ec t s  c a n  b e  e x p e c t e d  ( see  T a b l e  1). 
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(iii) Hellmann variant. Neither of these methods optimizes the energy expression 
of the (ls)(ns) singlet configuration. As a consequence both yield wave function 
which violate the virial theorem. This theorem will be obeyed by the RH F  
function if the l s -  ns element is defined as the CI matrix element of (ls)(ns) 
and the subtractive combination (ns) 2-  (ls)2)/~/2. Hence 

r,r (2s) r,,-(ls) 
J~ls~ns  : 1"~ l s , n s  - -XJ ,  l s ,ns .  

In this case the reorganization energies will be negative for all (ls)(ns):lSg 
Rydberg states. Table 1 shows that these are over-compensated by positive 
correlation energies. 

5. Example: Rydberg States of Helium 

It is the purpose of this section to demonstrate the feasibility of the method 
derived above with a numerical example. Further results will be presented in a 
forthcoming paper. 

We have calculated the RHF wave functions for the (ls)(nl) Rydberg states of 
He with n < 7 and 1 --- 2. For the Rydberg orbitals we have used the Gaussian basis 
specified in Ref. [6]. For core orbitals and penetration effects this set was 
augmented by a 10s, 5p, 2d basis with exponents up to 4700 (s), 11 (p) and 
0.56 (d). The total basis consists of 50 uncoupled Gaussians. For the (ls)(ns)lSg 
series we have tested all the three variants of the method presented in Sect. 4. 

The calculated energies (Table 1) agree with the results of earlier authors [22, 
29] except  for the ISg series. The Brillouin variant using orthogonal orbitals 
within each configuration but violating the Hel lman-Feynman theorem yields 
results slightly closer to the experiment and to the values of the corresponding 
triplet states than methods employing non-orthogonal orbitals [22]. With the 
Hellmann and Hylleraas variants we find large reorganization and correlation 
corrections which nearly cancel out. 

In his treatise on atomic spectra Edlen [30] has made extensive use of the 
concepts of effective quantum numbers and quantum defects. With FRC and 
R HF  calculations for the Rydberg states it is possible to separate the contributions 
of the reorganization and correlation effects within each series according to 

n* (exptl.) = n* (FRC) + An* (reorg.) + An*(corr.) 

(if relativistic effects can be neglected; see Table 2). n*(FRC) may be divided 
further into an integer principal quantum number n and a quantum defect 
8(FRC) as calculated in the FRC approximation: 

n* (FRC) = n - 8 (FRC). 

The observed quantum defects are, as a rule, nearly constant. Our results show 
that there is practically no reorganization (except for XSg) and an almost constant 
correlation contribution. (This can also be regarded as a proof for the numerical 
stability of our calculations). An eventual increase of the observed quantum 
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n*(exptl.) n*(FRC) n*(RHF) -An*(reorg.) b -An*(corr.) c 

1sd 2s 1.851 1.795 1.854 -0.059 0.003 
3s 2.857 2.804 2.858 -0.054 0.001 
4s 3.858 3.807 3.860 -0.053 0.001 
5s 4.859 4.808 4.860 --0.052 0.001 
6s 5.859 5.809 5.860 --0.051 0.001 
7s 6.860 6.810 6.861 --0.051 0.001 

1$~ 2s 2.009 --0.214 0.158 
3s 3.019 -0.215 0.162 
4s 4.021 -0.214 0.163 
5s 5.021 -0.213 0.162 
6s 6.021 --0.212 0.162 
7s 7.020 --0.210 0.160 

18~ 2s 1.716 0.079 -0.135 
3s 2.739 0.065 -0.118 
4s 3.746 0.061 -0.112 
5s 4.749 0.059 -0.110 
6s 5.751 0.058 -0.108 
7s 6.752 0.058 -0.108 

aS 2s 1,689 1.694 1.694 0 0.005 
3s 2.698 2.702 2.702 0 0.004 
4s 3.701 3.705 3.705 0 0.004 
5s 4,702 4.706 4.706 0 0.004 
6s 5.702 5.706 5.706 0 0.004 
7s 6.703 6.707 6.707 0 0.004 

1p 2p 2.009 2.021 2.021 0 0.012 
3p 3.011 3.022 3.022 0 0.011 
4p 4,012 4.023 4.023 0 0.011 
5p 5.012 5.023 5.023 0 0.011 
6p 6.012 6.023 6.023 0 0:011 
7p 7.012 7.024 7.024 0 0.012 

3p 2p 1.938 1.951 1.950 0.001 0.012 
3p 2.934 2.947 2.947 0 0.013 
4p 3.933 3.946 3.946 0 0.013 
5p 4.933 4.945 4.945 0 0.013 
6p 5.932 5.945 5.945 0 0.013 
7p 6.932 6.945 6.945 0 0.013 

1D 3d 2.998 3.000 3.000 0 0.002 
4d 3.998 4.001 4.001 0 0.003 
5d 4.998 5.001 5.001 0 0.003 
6d 5.998 6.001 6.001 0 0.003 
7d 6.998 7.001 7.001 0 0.003 

3D 3d 2.998 3.000 3.000 0 0.002 
4d 3.998 4.000 4.000 0 0.002 
5d 4.997 5.000 5.000 0 0.003 
6d 5.997 6.000 6.000 0 0.003 
7d 6.997 7.000 7.000 0 0.003 

a n , = ~ / _ ~ / 2 e ;  e-values from Table 1. 
b n*(RHF)-n*(FRC). 
c n * (exptl.)-n * (RHF); relativistic contributions neglected. 
d.e,f see Table 1. 
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defect  (e.g. through the 3p series) or a decreasing t rend  (1S, 3S, 1p) is r ep roduced  

by the 6(FRC).  S ingle t - t r ip le t  splitt ings are near ly  exact even in the F R C  
approximat ion .  A similar behav iour  of the decompos i t ion  of the effective qua n -  
tum n u m b e r s  has also b e e n  ob ta ined  for the Rydberg  series of Li [6]. It had to 
be expected since it is ra ther  improbab le  that  the almost  cons tan t  defects, as 
observed in the spectra,  result  f rom physically different effects with n o n - c o n s t a n t  
con t r ibu t ions  to the q u a n t u m  defect. 
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