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Hartree-Fock Calculations for Excited Rydberg States

Martin Jungen
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A method is introduced which allows to compute self-consistent restricted
Hartree—Fock wave functions for excited Rydberg configurations. The con-
cepts of reorganization and electron correlation of Rydberg states are dis-
cussed. As an illustration Hartree~Fock calculations for the (1s)(nl) Rydberg
series of He are presented.
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1. Introduction

The concepts of electron correlation and reorganization are so familiar, that
they need not be introduced. Both these concepts are characterized by the fact
that they are based on mathematical rather than on physical ideas, since neither
can be measured experimentally. Nevertheless electron correlation and reor-
ganization facilitate the physical interpretation of electronic wave functions
because the complicated energy of a correlated wave function can (at least
approximately) be partitioned into contributions which arise from physically
distinguishable effects. A classical example is Meyer’s study on the ionization
of H,O [1]. The ionization energies are analyzed in terms of Koopmans’ energies,
loss of correlation energy caused by the abstraction of an electron, reorganization
of the orbitals and so on. In this case the Hartree—Fock single determinant wave
function of the neutral molecule serves as a reference function with respect to
which reorganization and correlation energies can be calculated.

Although the concepts of reorganization and correlation have proved useful for
understanding the ground and low lying electronic states, they are in general
not applied in the discussion of higher excited states. There are two reasons for
this: First a reference function has to be calculated which can serve as a starting
point for the reorganization of the orbitals. It may be difficult to define a physically
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significant reference function. Second the distinction of reorganization and corre-
lation implies that the orbitals of the reference function can be relaxed selfcon-
sistently, i.e. that a restricted Hartree~-Fock function for the excited state can
be calculated. The techniques for such calculations are by no means standardized.

In the following two sections it will be shown how the concepts of reorganization
and correlation can be applied to Rydberg states.

2. The Frozen Core Aprroximation for Rydberg States

An electronic state is called a Rydberg state, if a single electron is moving in
an expanded orbital and is attracted by a relatively small ionic core. The shape
of the Rydberg orbital is determined mainly by the interaction with the charge
of the core and by orthogonality constraints with respect to the (occupied) core
orbitals and, perhaps, to lower (unoccupied) Rydberg orbitals. The prototype
for Rydberg orbitals are the electronic states of the hydrogen atom where the
core reduces to a proton.

Approximate single-configuration wave functions for Rydberg states can be
obtained with the frozen core (FRC) method. This method can be traced back
to Mulliken [2] and has been introduced into quantum chemistry by Lefebvre-
Brion and Moser [3], and by Hunt and Goddard [4] as the method of improved
virtual orbitals. In connection with excited Rydberg states however we prefer
to term it FRC [5].

First a restricted Hartree-Fock (RHF) calculation for the bare core is carried
out. This wave function may represent a closed-shell or an open-shell configur-
ation, a ground or an excited state. Then the subspace of the occupied core
orbitals is projected out of the orbital basis, and with the remaining orbitals the
single particle problem for the Rydberg electron is solved. This method has
repeatedly been applied to the calculation of atomic and molecular Rydberg
orbitals [6-8]. To be precise the Rydberg orbitals are eigenfunctions of the
operator

Y o) (b +20 =K+ I £ K* )¢, (1)

where the superscripts denote doubly and singly occupied core orbitals and the
sum extends over the virtual orbitals ¢,. Eq. (1) applies for a doublet Rydberg
state with closed-shell core if the potentials J° and K* are omitted, and for singlet
or triplet Rydberg states if the plus or minus sign is used, respectively. It can
be understood as a Brillouin condition optimizing a singly occupied Rydberg
orbital ¢rwith respect to the space of the unoccupied orbitals. The eigenvalues,
egr, of Eq. (1) are called orbital energies. If £, is added to the energy expectation
value of the bare core we get the total electronic energy of the kth Rydberg
state in the FRC approximation. Hence, the ex can serve as approximate
ionization energies of the Rydberg states [2].
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According to the Hylleraas-Undheim theorem [9, 10] the energy of the kth
Rydberg state of a given symmetry in the FRC approximation is an upper bound
for the exact kth energy eigenvalue. This theorem can be invoked here because
the FRC wave functions can also be interpreted as the eigenfunctions of a limited
Cl-treatment for all single excitations of the Rydberg electron in the field of a
fixed core. The consequences of this fact shall be discussed in Sect. 4.

We will use the FRC single configuration wave functions as reference functions
for the Rydberg states. The reorganization energy of the kth Rydberg state can
be defined as the energy difference between the kth FRC and the kth excited
state RHF solution where the corresponding reorganized core orbitals are
occupied. The difference between the RHF energy and the exact non-relativistic
energy is defined as the correlation energy [11].

3. Hartree~Fock-Theory for Excited Rydberg States

In the past, several methods have been invented for the calculation of self-
consistent single-configuration wave functions of electronically excited states.
These methods have been applied to inner shell ionizations [12] and valence
excited Koopmans’ configurations [13] and also to lower excited states [14-17].
Froese has developed a formalism which was applied to the calculation of atomic
Rydberg states {18, 19]. All these methods yield orbitally optimized wave func-
tions for different electronic states of a system which are mutually non-orthogonal
[20, 21]. In exceptional cases even the set of occupied orbitals of an individual
excited configuration has been chosen non-orthogonal [22]. The method which
we present below does not differ in this respect from earlier attempts, but has
the advantage that it has been specifically designed for the calculation of Rydberg
states and leads to a perspicuous formalism which can be easily programmed.

This method is based on the familiar formalism for the treatment of open-shell
configurations in the RHF approximation (e.g. {23, 24]). A Brillouin condition
has to be formulated [25-27] for any pair of orbital subspaces whose mixing
may lead to an improved energy of the wave function. Each Brillouin condition
yields an effective operator and these operators have to be combined into a
single Fock matrix by means of the projection operator technique. The Fock
matrix is diagonal if it is written in the basis of the self-consistent orbitals.

If this formalism is applied to the calculation of excited Rydberg configurations
one is confronted with the necessity of preventing the excited Rydberg orbital
from collapsing and transforming to a lower orbital. This can be achieved with
an iterative procedure where a number of RHF iterations for the core orbitals
are performed and then an FRC calculation for the Rydberg orbital is carried
out and the process is repeated, until selfconsistency is reached. In the course
of the RHF steps all the off-diagonal elements of the Fock matrix connecting
the occupied Rydberg orbital with unoccupied orbitals are put equal to zero in
order to avoid any mixing of occupied and unoccupied Rydberg orbitals. The
FRC step on the other hand is equivalent to an elimination of all the matrix
elements influencing the core orbitals, as is shown in Fig. 1.
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Fig. 1. Fock matrix for excited Rydberg configurations

/// matrix elements omitted for the FRC step.
\\\ elements zeroed during the reorganization of the core orbitals.

7

K The entries of the matrix have the following meaning:
¢ core orbitals (occupied),
v k occupied Rydberg orbital,

'

v, v’ unoccupied orbitals

The FRC step yields a manifold of Rydberg orbitals which have been calculated
in the field of the reorganized core. The procedure leads to a stable solution if,
after each FRC calculation, the kth Rydberg orbital is selected to be occupied
for the next RHF iterations of the core. Selfconsistency is achieved as soon as
the orbitals will not be modified anymore by either step. In this situation all the
off-diagonal elements of the Fock matrix whcih were zeroed in the course of
the iteration will vanish automatically. Therefore no artificial condition is imposed
on the self-consistent wave function other than requiring its energy to be an
upper bound of the kth exact solution of the Schrédinger equation.

4. Discussion of Special Cases

We are used to the situation that the energy of a wave function is lowered if
reorganization and electron correlation corrections are included. In this case the
signs of AE (reorg.) and AE(corr.) are defined to be negative. For excited states,
however, both energy contributions can be positive as well. More often positive
contributions to the total (negative) correlation energy lead to unusual correlation
corrections for excitation on binding energies similar to those reported by Bagus
[12] for the case of core ionization. Positive correlation effects appear when in
the exact wave function the Hartree-Fock configuration is mixed with a lower
configuration such that the energy is raised. Physically this can be interpreted
in analogy to the (negative) correlation energy of a ground state wave function:
In the RHF approximation the electron repulsion is underestimated with respect
to a correlated function, where the electrons are forced to be closer to each
other than a single configuration picture would predict. As a rule Rydberg states
exhibit effects of positive correlation —or ‘‘anticorrelation”, when there is a
different configuration of the same symmetry at lower energies. An example is
provided by the (15)°(2s)(nd): D,-Rydberg series of Be which is shifted to
higher energies by interaction with the (15)*(2p)°: 1Dg configuration. In this case
the Hylleraas~Undheim theorem invoked above says that the ... (2s)(3d): 1Dg
single configuration energy is an upper bound to the exact energy of the lowest
ng state which turns out to have . .. (2p)° configuration [28]. The RHF energy
of ... (2s)(4d) is an upper bound to the exact energy of . .. (25)(3d) and so on.
Positive reorganization effects appear when in the FRC approximation the
interaction with a lower configuration is neglected, which will be included in the
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RHF treatment. As an example we discuss the (1s)(ns): 'S, Rydberg series of
He. In the FRC approximation the ns orbitals are optimized assuming a fixed
1s orbital of He". RHF orbitals are chosen such that the matrix element of the
Hamiltonian between (1s)(ns) and any (1s)(ks) or (ks)(ns) singlet configuration
(k #1, n; orthogonal orbitals assumed) vanishes. This is achieved with an
appropriate definition of the 1s—ks and ns — ks matrix elements of the Fock
matrix. The crucial point is the inclusion of the (15)* and (ns)? configurations.
The 1s —ns element of the Fock matrix can be used for handling one arbitrarily
chosen linear combination of them. We have studied the following possibilities:

(i) Brillouin variant. The 1s—ns element of the Fock matrix is defined as the
matrix element of the Hamiltonian between (1s)(ns) and the additivie combina-
tion ((1s)*+ (ns)?)/v2. Hence

(1s) (ns)
Fls,ns = 2h1s,ns +Klsfns +K1r;fns

where F,h, K denote the Fock, single particle and exchange operators.
This choice leads to a self-consistent wave function in the sense of the Brillouin
theorem because the CI matrix element to any singly substituted configuration
vanishes. Here a configuration is called singly substituted when the CI matrix
element contains formally a contribution of the 4 operator. The CI element
with a complementary combination ((15)* = (ns)?)/ V2 consists only of electron
interaction contributions.

(ii) Hylleraas variant. The 1s —ns element can be used for ensuring that the
RHF energy of a Rydberg state is a true upper bound to the corresponding

Table 1. (1s n/) Rydberg states of He: Ionization energies

—e(exptl.)® —&(FRC)® —e(RHF)  —AE(reorg.) —AE(corr.)°

' 25 0.145974 0.155255 0.145511  —0.009744 0.000463
3s 0.061272 0.063587 0.061202 -2385 70

4s 0.033587 0.034497 0.033565 —932 22

5s 0.021177 0.021625 0.021167 —458 10

6s 0.014563 0.014816 0.014558 -258 5

Ts 0.010626 0.010782 0.010622 -160 4

tge  2s 0.123906  —0.031349 0.022068
3s 0.054864 —8723 6408

4s 0.030925 —-3572 2662

5s 0.019830 —-1795 1347

6s 0.013790 ~1026 773

7s 0.010147 —636 479

st 25 0.169851 0.014596 —0.023877
3s 0.066644 3057 -5372

4s 0.035630 1133 —2043

5s 0.022168 543 —991

6s 0.015118 302 —555

Ts 0.010967 185 -341
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Table 1 (cont.)

—e(exptl.)? ~¢(FRC)? —¢(RHF)  —AE(reorg.) —AE(corr.)

3 2 0.175237 0.174242 0.174247  0.000005 0.000990
3s 0.068691 0.068482 0.068482 0 209

4s 0.036513 0.036434 0.036434 0 79

5s 0.022619 0.022580 0.022580 0 39

6s 0.015378 0.015355 0.015355 0 23

7s 0.011130 0.011116 0.011116 0 14

p 2p 0.123839 0.122445 0.122460  0.000015 0.001379
3p 0.055146 0.054736 0.054737 1 409

4p 0.031069 0.030895 0.030895 0 174

5p 0.019906 0.019815 0.019815 0 91

6p 0.013834 0.013781 0.013781 0 53

Tp 0.010169 0.010135 0.010135 0 34
. 2p 0.133173 0.131316 0.131431  0.000115 0.001742
3p 0.058083 0.057579 0.057587 8 496
4p 0.032325 0.032119 0.032120 1 205
Sp 0.020551 0.020446 0.020447 1 104

6p 0.014208 0.014147 0.014147 0 61

T 0.010405 0.010366 0.010366 0 39
D 3d 0.055621 0.055543 0.055543  0.000000 0.000078
4d 0.031280 0.031242 0.031242 0 38
5d 0.020016 0.019995 0.019995 0 21
6d 0.013899 0.013885 0.013885 0 14
7d 0.010211 0.010201 0.010201 0 10
D 3d 0.055636 0.055569 0.055569  0.000000 0.000067
4d 0.031289 0.031257 0.031257 0 32
5d 0.020021 0.020003 0.020003 0 18
6d 0.013902 0.013890 0.013890 0 12
7d 0.010212 0.010204 0.010204 0 8

? Binding energies with respect to He™ (Ref. [28]). 1 a u (*He)~218844.6 cm ™.
® E(He")=1.999996 a.u. with the basis set used.

e (RHF)~¢ (exptl.); relativistic contributions neglected.

9 Brillouin variant, see text.

° Hylleraas variant, see text.

fHellmann variant, see text.

exact energy. To that purpose it has to be defined as the CI matrix element of
the configurations (1s)(ns) and (1s)°. (It is assumed that the energy of (1s)* is
below (15)(ns), in contrast to (ns)*). Hence

1
Fls,ns = ‘/E(hls,ns +K(15fr)1s .

Arguing along the same lines as Guest and Saunders [13] one can see that in this
case the RHF energy corresponds to the nth eigenvalue of a limited CI calcula-
tion. Since the FRC energy is an upper bound only to the (n —1)th state of 'S,
symmetry positive reorganization effects can be expected (see Table 1).
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(iii) Hellmann variant. Neither of these methods optimizes the energy expression
of the (1s5)(ns) singlet configuration. As a consequence both yield wave function
which violate the virial theorem. This theorem will be obeyed by the RHF
function if the 1s —ns element is defined as the CI matrix element of (1s)(ns)
and the subtractive combination (ns)?—(15)?)/v2. Hence

(25) (1s)
Flsans = Kls,ns _Kls,ns-

In this case the reorganization energies will be negative for all (1s)(ns):1S'g
Rydberg states. Table 1 shows that these are over-compensated by positive
correlation energies.

5. Example: Rydberg States of Helium

It is the purpose of this section to demonstrate the feasibility of the method
derived above with a numerical example. Further results will be presented in a
forthcoming paper.

We have calculated the RHF wave functions for the (1s5)(n/) Rydberg states of
He with n =7 and [ = 2. For the Rydberg orbitals we have used the Gaussian basis
specified in Ref. [6]. For core orbitals and penetration effects this set was
augmented by a 10s, 5p, 2d basis with exponents up to 4700 (s), 11 (p) and
0.56 (d). The total basis consists of 50 uncoupled Gaussians. For the (1s)(ns)1Sg
series we have tested all the three variants of the method presented in Sect. 4.

The calculated energies (Table 1) agree with the results of earlier authors [22,
29] except for the 1Sg series. The Brillouin variant using orthogonal orbitals
within each configuration but violating the Hellman—-Feynman theorem yields
results slightly closer to the experiment and to the values of the corresponding
triplet states than methods employing non-orthogonal orbitals [22]. With the
Hellmann and Hylleraas variants we find large reorganization and correlation
corrections which nearly cancel out.

In his treatise on atomic spectra Edlen [30] has made extensive use of the
concepts of effective quantum numbers and quantum defects. With FRC and
RHF calculations for the Rydberg states it is possible to separate the contributions
of the reorganization and correlation effects within each series according to

n*(exptl.) = n*(FRC) + An*(reorg.) + An*(corr.)

(if relativistic effects can be neglected; see Table 2). n*(FRC) may be divided
further into an integer principal quantum number » and a quantum defect
8(FRC) as calculated in the FRC approximation:

n*(FRC)=n —8(FRC).

The observed quantum defects are, as a rule, nearly constant. Our results show
that there is practically no reorganization (except for 1Sg) and an almost constant
correlation contribution. (This can also be regarded as a proof for the numerical
stability of our calculations). An eventual increase of the observed quantum



376 M. Jungen

Table 2. (15 n/) Rydberg states of He: Effective quantum numbers®

n*(exptl.) n*(FRC) n*(RHF) —An*(reorg.)® —An*(corr.)
'ed 25 1.851 1.795 1.854 -0.059 0.003
3s  2.857 2.804 2.858 -0.054 0.001
4s  3.858 3.807 3.860 -0.053 0.001
5s  4.859 4.808 4.860 —-0.052 0.001
6s  5.859 5.809 5.860 -0.051 0.001
7s  6.860 6.810 6.861 —0.051 0.001
e 25 2.009 -0.214 0.158
3s 3.019 -0.215 0.162
4s 4.021 -0.214 0.163
5s 5.021 -0.213 0.162
6s 6.021 —-0.212 0.162
7s 7.020 -0.210 0.160
st 25 1.716 0.079 -0.135
3s 2.739 0.065 -0.118
4s 3.746 0.061 -0.112
5s 4.749 0.059 -0.110
6s 5.751 0.058 ~-0.108
7s 6.752 0.058 -0.108
3¢ 25 1.689 1.694 1.694 0 0.005
35 2.698 2.702 2.702 0 0.004
45 3.701 3.705 3.705 0 0.004
55 4.702 4.706 4.706 0 0.004
6s  5.702 5.706 5.706 0 0.004
7s  6.703 6.707 6.707 0 0.004
P 2p  2.009 2.021 2.021 0 0.012
3p  3.011 3.022 3.022 0 0.011
4p  4.012 4.023 4.023 0 0.011
5p 5.012 5.023 5.023 0 0.011
6p  6.012 6.023 6.023 0 0.011
70 7.012 7.024 7.024 0 0.012
3p 2p 1938 1.951 1.950 0.001 0.012
3p 2934 2.947 2.947 0 0.013
4p  3.933 3.946 3.946 0 0.013
5p  4.933 4.945 4.945 0 0.013
6p  5.932 5.945 5.945 0 0.013
7p  6.932 6.945 6.945 0 0.013
'D 34 2998 3.000 3.000 0 0.002
4d  3.998 4.001 4.001 0 0.003
5d  4.998 5.001 5.001 0 0.003
6d  5.998 6.001 6.001 0 0.003
7d  6.998 7.001 7.001 0 0.003
3p 34 2998 3.000 3.000 0 0.002
4d  3.998 4.000 4.000 0 0.002
5d 4.997 5.000 5.000 0 0.003
6d 5997 6.000 6.000 0 0.003
7d  6.997 7.000 7.000 0 0.003

2 p*=+/—1/2¢; g-values from Table 1.

® n*(RHF)—n*(FRC).

 n*(exptl.)-n*(RHF); relativistic contributions neglected.
defsee Table 1.



Excited Rydberg States 377

defect (e.g. through the >P series) or a decreasing trend ('S, *S, 'P) is reproduced
by the §(FRC). Singlet-triplet splittings are nearly exact even in the FRC
approximation. A similar behaviour of the decomposition of the effective quan-
tum numbers has also been obtained for the Rydberg series of Li [6]. It had to
be expected since it is rather improbable that the almost constant defects, as
observed in the spectra, result from physically different effects with non-constant
contributions to the quantum defect.
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